Respuesta :

h(x) = 4x² - 8x - 60
    0 = 4x² - 8x - 60
    0 = 4(x²) - 4(2x) - 4(15)
    0 = 4(x² - 2x - 15)
    4               4
    0 = x² - 2x - 15
    0 = x² - 5x + 3x - 15
    0 = x(x) - x(5) + 3(x) - 3(5)
    0 = x(x - 5) + 3(x - 5)
    0 = (x + 3)(x - 5)
    0 = x + 3    or    0 = x - 5
  - 3        - 3        + 5      + 5
    3 = x       or       5 = x

The smallest zero of the function h(x) = 4x^2 - 8x - 60 is -3

How to determine the smallest zero?

The function is given as:

h(x) = 4x^2 - 8x - 60

Set to 0

4x^2 - 8x - 60 = 0

Divide through by 4

x^2 - 2x - 15 = 0

Expand

x^2 - 5x + 3x - 15 = 0

Factorize

x(x - 5) + 3(x - 5) = 0

Factorize

(x + 3)(x - 5) = 0

Solve for x

x = -3 or x = 5

Hence, the smallest zero of the function h(x) = 4x^2 - 8x - 60 is -3

Read more about quadratic functions at:

https://brainly.com/question/7784687