Respuesta :
h(x) = 4x² - 8x - 60
0 = 4x² - 8x - 60
0 = 4(x²) - 4(2x) - 4(15)
0 = 4(x² - 2x - 15)
4 4
0 = x² - 2x - 15
0 = x² - 5x + 3x - 15
0 = x(x) - x(5) + 3(x) - 3(5)
0 = x(x - 5) + 3(x - 5)
0 = (x + 3)(x - 5)
0 = x + 3 or 0 = x - 5
- 3 - 3 + 5 + 5
3 = x or 5 = x
0 = 4x² - 8x - 60
0 = 4(x²) - 4(2x) - 4(15)
0 = 4(x² - 2x - 15)
4 4
0 = x² - 2x - 15
0 = x² - 5x + 3x - 15
0 = x(x) - x(5) + 3(x) - 3(5)
0 = x(x - 5) + 3(x - 5)
0 = (x + 3)(x - 5)
0 = x + 3 or 0 = x - 5
- 3 - 3 + 5 + 5
3 = x or 5 = x
The smallest zero of the function h(x) = 4x^2 - 8x - 60 is -3
How to determine the smallest zero?
The function is given as:
h(x) = 4x^2 - 8x - 60
Set to 0
4x^2 - 8x - 60 = 0
Divide through by 4
x^2 - 2x - 15 = 0
Expand
x^2 - 5x + 3x - 15 = 0
Factorize
x(x - 5) + 3(x - 5) = 0
Factorize
(x + 3)(x - 5) = 0
Solve for x
x = -3 or x = 5
Hence, the smallest zero of the function h(x) = 4x^2 - 8x - 60 is -3
Read more about quadratic functions at:
https://brainly.com/question/7784687