Match each area of a circle to its corresponding radius or diameter. area: 63.585 square meters area: 28.26 square meters area: 120.7016 square meters area: 12.56 square meters area: 482.8064 square meters area: 113.04 square meters diameter: 12.4 meters arrowBoth radius: 4.5 meters arrowBoth diameter: 6 meters arrowBoth radius: 2 meters

Respuesta :

area: 28.26 square meters = diameter of 6

Answer:

A) [tex]area=63.585\ m^{2}[/tex], [tex]r=4.5\ m[/tex]

B) [tex]area=28.26\ m^{2}[/tex], [tex]D=6\ m[/tex]

C) [tex]area=120.7016\ m^{2}[/tex], [tex]D=12.4\ m[/tex]

D) [tex]area=12.56\ m^{2}[/tex], [tex]r=2\ m[/tex]

E) [tex]area=482.8064\ m^{2}[/tex], [tex]r=12.4\ m[/tex]

F) [tex]area=113.04\ m^{2}[/tex] , [tex]r=6\ m[/tex]

Step-by-step explanation:

we know that

The area of a circle is equal to

[tex]A=\pi r^{2}[/tex]

solve for r

[tex]r=\sqrt{\frac{A}{\pi}}[/tex]

Verify each case

case A) [tex]area=63.585\ m^{2}[/tex]

substitute in the formula

[tex]r=\sqrt{\frac{63.585}{\pi}}=4.5\ m[/tex]

case B) [tex]area=28.26\ m^{2}[/tex]

substitute in the formula

[tex]r=\sqrt{\frac{28.26}{\pi}}=3\ m[/tex]

the diameter is equal to

[tex]D=2r=2*3=6\ m[/tex]

case C) [tex]area=120.7016\ m^{2}[/tex]

substitute in the formula

[tex]r=\sqrt{\frac{120.7016}{\pi}}=6.2\ m[/tex]

the diameter is equal to

[tex]D=2r=2*6.2=12.4\ m[/tex]

case D) [tex]area=12.56\ m^{2}[/tex]

substitute in the formula

[tex]r=\sqrt{\frac{12.56}{\pi}}=2\ m[/tex]

case E) [tex]area=482.8064\ m^{2}[/tex]  

substitute in the formula

[tex]r=\sqrt{\frac{482.8064}{\pi}}=12.4\ m[/tex]

case F) [tex]area=113.04\ m^{2}[/tex]  

substitute in the formula

[tex]r=\sqrt{\frac{482.8064}{\pi}}=6\ m[/tex]