Which statement implies that A and B are independent events?

A. P(B|A) = P(B A)

B. P(B|A) = P(B)
P(A)
C. P(B|A) = P(A)

D. P(B|A) = P(B)

Respuesta :

The events [tex]A,B[/tex] are independent if and only if [tex]P(A\cap B)=P(A)\cdot P(B)[/tex]. Under this condition, we have conditional probabilities

[tex]P(A\mid B)=\dfrac{P(A\cap B)}{P(B)}=\dfrac{P(A)\cdot P(B)}{P(B)}=P(A)[/tex]

[tex]P(B\mid A)=P(B)[/tex]

so the answer is D.

Answer:

The answer is D.

Step-by-step explanation: