What is the equation of the axis of symmetry for the parabola y equals negative start fraction one over two end fraction left parenthesis x plus three right parenthesis squared minus five?x=-5x=-3x=-1/2x=3

Respuesta :

For the equation,
y = 1/2(x+3)^2 -5
The vertice is (-3,-5). Therefore the axis of symmetry is X = -3.

Answer:

the equation of the axis of symmetry for the parabola is:

                               [tex]x=-3[/tex]

Step-by-step explanation:

The equation of the parabola is given by:

             [tex]y=-\dfrac{1}{2}(x+3)^2-5[/tex]

We know that for the general equation of the parabola of the type:

[tex]y=a(x-h)^2+k[/tex]

The vertex of the parabola is at (h,k)

and the axis of symmetry of the parabola is :  x=h

Here after comparing the equation of parabola with the general equation of parabola we have:

[tex]h=-3[/tex]

Hence, the axis of symmetry of the given parabola is:

                                 [tex]x=-3[/tex]