Use the divergence theorem to calculate the surface integral s f · ds; that is, calculate the flux of f across s. f(x, y, z) = (cos(z) + xy2) i + xe−z j + (sin(y) + x2z) k, s is the surface of the solid bounded by the paraboloid z = x2 + y2 and the plane z = 9.

Respuesta :

By the divergence theorem,

[tex]\displaystyle\iint_{\mathcal S}\mathbf f\cdot\mathrm d\mathbf S=\iiint_{\mathcal R}\nabla\cdot\mathbf f\,\mathrm dV[/tex]

where [tex]\mathcal R[/tex] is the 3-dimensional space with boundary [tex]\mathcal S[/tex]. We have

[tex]\mathbf f(x,y,z)=(\cos z+xy^2)\,\mathbf i+xe^{-z}\,\mathbf j+(\sin y+x^2z)\,\mathbf k[/tex]

[tex]\implies\nabla\cdot\mathbf f=\dfrac{\partial(\cos z+xy^2)}{\partial x}+\dfrac{\partial(xe^{-z})}{\partial y}+\dfrac{\partial(\sin y+x^2z)}{\partial z}=y^2+x^2[/tex]

So the flux is given by

[tex]\displaystyle\iiint_{\mathcal R}(x^2+y^2)\,\mathrm dx\,\mathrm dy\,\mathrm dz[/tex]

Converting to cylindrical coordinates lets us compute the following integral:

[tex]\displaystyle\int_{\theta=0}^{\theta=2\pi}\int_{r=0}^{r=3}\int_{z=r^2}^{z=9}r^3\,\mathrm dz\,\mathrm dr\,\mathrm d\theta[/tex]

and the flux is then

[tex]\displaystyle2\pi\int_{r=0}^{r=1}r^3(9-r^2)\,\mathrm dr=\frac{243\pi}2[/tex]