Respuesta :

we are given

[tex] \frac{(1+cot^2(\theta))*tan(\theta)}{sec^2(\theta)} =cot(\theta) [/tex]

We will simplify left side and make it equal to right side

Left side:

[tex] \frac{(1+cot^2(\theta))*tan(\theta)}{sec^2(\theta)} [/tex]

we can use trigonometric identity

[tex] 1+cot^2(\theta)=csc^2(\theta) [/tex]

we can replace it

[tex] \frac{(csc^2(\theta))*tan(\theta)}{sec^2(\theta)} [/tex]

we know that

csc=1/sin and sec=1/cos

so, we can replace it

and we get

[tex] \frac{cos^2(\theta)tan(\theta)}{sin^2(\theta)} [/tex]

now, we know that

tan =sin/cos

[tex] \frac{cos^2(\theta)*sin(\theta)}{sin^2(\theta)*cos(\theta)} [/tex]

we can simplify it

and we get

[tex] \frac{cos(\theta)}{sin(\theta)} [/tex]

we can also write it as

[tex] =cot(\theta) [/tex]

Right Side:

[tex] cot(\theta) [/tex]

we can see that

left side = right side

so,

[tex] \frac{(1+cot^2(\theta))*tan(\theta)}{sec^2(\theta)} =cot(\theta) [/tex]......Answer