Respuesta :

16/22 = 8/11
8/11 = x/x+7
8x+56 = 11x
11x-8x = 56
3x = 56
x = 56/3
=18 2/3

Answer:

[tex]x=18{\frac{2}{3}}[/tex]

Step-by-step explanation:

It is given that the segment is parallel to one side of the triangle, therefore using the proportionality theorem, we get

[tex]\frac{x}{x+x+7}=\frac{16}{16+22}[/tex]

⇒[tex]\frac{x}{2x+7}=\frac{16}{38}[/tex]

⇒[tex]\frac{x}{2x+7}=\frac{8}{19}[/tex]

Upon cross multiplying, we have

⇒[tex]19x=16x+56[/tex]

⇒[tex]3x=56[/tex]

[tex]x=18{\frac{2}{3}}[/tex]

Thus, the value of x is [tex]18{\frac{2}{3}}[/tex].

Hence, option B is correct.