Respuesta :

we are given

[tex] x^2-6x+y^2+10y-2=0 [/tex]

Firstly, we will change it into standard equation of circle

that is

[tex] (x-h)^2 +(y-k)^2 =r^2 [/tex]

where r is radius

(h,k) is center

now, we can change our equation into this form

To change our equation into this form, we need to complete x square and y square

[tex] x^2-6x+y^2+10y-2=0 [/tex]

step-1: Move 2 on right side

[tex] x^2-6x+y^2+10y-2+2=0+2 [/tex]

[tex] x^2-6x+y^2+10y=2 [/tex]

step-2: Complete x square

[tex] x^2-2*3*x+y^2+10y=2 [/tex]

[tex] x^2-2*3*x+3^2+y^2+10y=2+3^2 [/tex]

[tex] (x-3)^2+y^2+10y=2+3^2 [/tex]

step-3: Complete y square

[tex] (x-3)^2+y^2+2*5*y=2+3^2 [/tex]

[tex] (x-3)^2+y^2+2*5*y+5^2=2+3^2+5^2 [/tex]

[tex] (x-3)^2+(y+5)^2=2+3^2+5^2 [/tex]

step-4: Combine right side terms

[tex] (x-3)^2+(y+5)^2=36 [/tex]

[tex] (x-3)^2+(y+5)^2=6^2 [/tex]

now, we can compare with our equation

and we will get

radius =r=6...............Answer

center=(h,k)=(3,-5)........................Answer