In the accompanying figure, triangle ABC has coordinates A(0,3), B(7,3), C(7,7). What is the area of triangle ABC in square units?

We know area of triangle = [tex] \frac{1}{2} * base * height [/tex]
In triangle ABC , AB is the base and BC is the height
Now we find the distance between A and B
Distance formula is [tex] \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} [/tex]
A(0,3), B(7,3)
Distance AB = [tex] \sqrt{(7-0)^2 + (3-3)^2} [/tex]
= [tex] \sqrt{(7)^2 } [/tex] = 7
B(7,3), C(7,7)
Distance BC = [tex] \sqrt{(7-7)^2 + (7-3)^2} [/tex]
= [tex] \sqrt{(4)^2 } [/tex] = 4
area of triangle = [tex] \frac{1}{2} * base * height [/tex]
area of triangle = [tex] \frac{1}{2} * AB * BC [/tex]
= [tex] \frac{1}{2} * 7 * 4 [/tex] = 14 [tex] units ^2 [/tex]