In the accompanying figure, triangle ABC has coordinates A(0,3), B(7,3), C(7,7). What is the area of triangle ABC in square units?

Look at the picture.
[tex]A_\triangle=\dfrac{bh}{2}[/tex]
[tex]b=7,\ h=4\\\\A_\triangle=\dfrac{7\cdot4}{2}=14[/tex]
Answer: D. 14 units²
Answer:
Option (D).
Step-by-step explanation:
AB=[tex]\sqrt{(7-0)^{ ^{2}} +(3-3)^{2}[/tex]
AB=7 unit
BC=[tex]\sqrt{(7-7)^{ ^{2}} +(7-3)^{2}[/tex]
BC=4 unit
Area of a triangle=[tex]\frac{1}{2}[/tex]×base×height
Area of a triangle ABC=[tex]\frac{1}{2}[/tex]×AB×BC
Area =[tex]\frac{1}{2}[/tex]×7×4
Hence,Area of a triangle=14 [tex]unit^{2}[/tex]