In the accompanying figure, triangle ABC has coordinates A(0,3), B(7,3), C(7,7). What is the area of triangle ABC in square units?

In the accompanying figure triangle ABC has coordinates A03 B73 C77 What is the area of triangle ABC in square units class=

Respuesta :

gmany

Look at the picture.

[tex]A_\triangle=\dfrac{bh}{2}[/tex]

[tex]b=7,\ h=4\\\\A_\triangle=\dfrac{7\cdot4}{2}=14[/tex]

Answer: D. 14 units²

Ver imagen gmany

Answer:

Option (D).

Step-by-step explanation:

AB=[tex]\sqrt{(7-0)^{ ^{2}} +(3-3)^{2}[/tex]

AB=7 unit

BC=[tex]\sqrt{(7-7)^{ ^{2}} +(7-3)^{2}[/tex]

BC=4 unit

Area of a triangle=[tex]\frac{1}{2}[/tex]×base×height

Area of a triangle ABC=[tex]\frac{1}{2}[/tex]×AB×BC

Area =[tex]\frac{1}{2}[/tex]×7×4

Hence,Area of a triangle=14 [tex]unit^{2}[/tex]