The boiling point of water at lake Tahoe is 95.6°C.
The variation of boiling point of water with pressure is determined by using the Clausius- Clapeyron equation.
[tex] ln(\frac{P_1}{P_2} )=(\frac{\Delta H_vap}{R})(\frac{1}{T_2} -\frac{1}{T_1} ) [/tex]
Here,
P₁ is the pressure at temperature T₁, P₂is the pressure at temperature T₂;ΔHvap is the enthalpy of vaporization of water,and R is the universal gas constant.
rewrite the expression for T₂.
[tex] T_2=(\frac{R*ln\frac{P_1}{P_2}}{\Delta H_vap} +\frac{1}{T_1} )^-^1 [/tex]
The boiling point of water at atmospheric pressure of 760 torr is 373 K.
Substitute 760 torr for P₁, 649 torr for P₂, 373 K for T₁, 8.314 J/K mol for R and 40660 J/mol for Δ H_vap and simplify.
[tex] T_2=(\frac{R*ln\frac{P_1}{P_2}}{\Delta H_vap} +\frac{1}{T_1} )^-^1\\ =(\frac{(8.314 J/K mol)(ln\frac{760 torr}{649 torr})}{40660 J/mol} +\frac{1}{373 K} )^-^1\\ =368.56 K [/tex]
Express the temperature in Celcius.
[tex] T_2=368.56 K -273 \\ =95.6^oC [/tex]