You need to find the distance across a river, so you make a triangle. BC is 661 feet, m∠B=103.2° and m∠C=14.4°. Find AB. A. 299 ft B. 168 ft C. 185 ft D. 188 ft

check the picture below.
recall the angle at A is 180° - 103.2° - 14.4°.
Answer:
The correct option is: C. 185 ft
Step-by-step explanation:
In [tex]\triangle ABC[/tex], [tex]m\angle B=103.2[/tex]° and [tex]m\angle C=14.4[/tex]°
As the sum of three angles in any triangle is always 180°, so [tex]m\angle A= 180-(103.2+14.4)=180-117.6=62.4[/tex]°
Given that, [tex]BC= 661\ ft[/tex]
Using the Sine rule, we will get......
[tex]\frac{AB}{Sin(C)}=\frac{BC}{Sin(A)}\\ \\ \frac{AB}{Sin(14.4)}=\frac{661}{Sin(62.4)}\\ \\ AB=\frac{661*Sin(14.4)}{Sin(62.4)}=185.492...\approx 185\ ft[/tex]