Respuesta :

[tex] \bf \textit{arc's length}\\\\
s=\cfrac{\theta \pi r}{180}~~
\begin{cases}
r=radius\\
\theta =angle~in\\
\qquad degrees\\
------\\
r=8\\
\theta = 6
\end{cases}\implies s=\cfrac{(6)(\pi )(8)}{180}\implies s=\cfrac{4\pi }{15} [/tex]

The formula for arc length is s = r * theta, where theta is the central angle

in radians (not degrees).


Converting that 6° central angle to radians,


pi rads pi rads

(6°) * ------------- = -------------- = 0.1047 rads

180° 30


Then the arc length here is s = r * theta, or s = (8 ft)(0.1047 rads) = 0.838 ft