The midpoint of JK is point L at (–1, 8). One endpoint is J(4, –15). Which equations can be solved to determine the coordinates of the other endpoint, K? Check all that apply.

Respuesta :

[tex]\bf ~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ J(\stackrel{x_1}{4}~,~\stackrel{y_1}{-15})\qquad K(\stackrel{x_2}{x}~,~\stackrel{y_2}{y}) \qquad % coordinates of midpoint \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left( \cfrac{x+4}{2}~~,~~\cfrac{y-15}{2} \right)\implies \stackrel{midpoint}{L(-1,8)}\implies \begin{cases} \cfrac{x+4}{2}=-1\\\\ x+4=-2\\ \boxed{x=-6}\\ ------\\ \cfrac{y-15}{2}=8\\\\ y-15=16\\ \boxed{y=21} \end{cases}[/tex]

Answer:

b

Step-by-step explanation: