Respuesta :

30 60 90 triangel has special abilities. 30 degree opposite is K , 60 is
[tex]k \sqrt{3} [/tex]
and 90 is 2K , 45 45 90 triangel is ; if 45 degree opposite is a and the other is same and the hypothenus( i dont know how 2 correct) is being
[tex]a \sqrt{2} [/tex]
Ver imagen emregsli55pbq693
You have 2 triangles here making up this single quadrilateral.  One of the triangles is a 30-60-90 and the other one is a 45-45-90.  These 2 triangles share a hypotenuse.  We need the length of that hypotenuse if we are to find the missing side x.  The "lower" triangle is the 30-60-90 and the side we are given is across from the 30 degree angle.  In the Pythagorean triple for a 30-60-90, the side across from the 30 degree angle is x, the side across from the 60 degree angle is  [tex]x \sqrt{3} [/tex],  and the hypotenuse is 2x.  So we need to find x.  If   [tex]x=14 \sqrt{3} [/tex]  then  two times x  is equal to  [tex]2(14 \sqrt{3}) [/tex]   which is equal to   [tex]28 \sqrt{3} [/tex].  So the length of the hypotenuse is  [tex]28 \sqrt{3} [/tex].  The Pythagorean triple for a 45-45-90 is [tex](x,x,x \sqrt{2}) [/tex]  with   [tex]x \sqrt{2} [/tex]  as the length of the hypotenuse in a 45-45-90.  If the length of the hypotenuse is   [tex]28 \sqrt{3} [/tex],  then we need to solve for x.  [tex]x \sqrt{2}=28 \sqrt{3} [/tex].  We solve for x by dividing by the square root of 2, like this:  [tex]x= \frac{28 \sqrt{3} }{ \sqrt{2} } [/tex].  The only way to solve this is to multiply by  [tex] \frac{ \sqrt{2} }{ \sqrt{2} } [/tex].  Doing this step by step we have  [tex] \frac{28 \sqrt{3} }{ \sqrt{2} }* \frac{ \sqrt{2} }{ \sqrt{2} } [/tex].   Multiply straight across the top and straight across the bottom to get   [tex] \frac{28 \sqrt{6} }{2} [/tex]  which simplifies by reduction to  [tex]14 \sqrt{6} [/tex].   First choice above.