Respuesta :
[tex]4\sqrt{x^{10}}=4\sqrt{(x^5)^2}=4|x^5|[/tex]
[tex]\text{Used:}\\\\(a^n)^m=a^{n\cdot m}\\\\\sqrt{a^2}=|a|[/tex]
Answer:
[tex]4x^{5}[/tex]
Step-by-step explanation:
The given expression is [tex]4\sqrt{x^{10}}[/tex]
We have to simplify the given expression
[tex]4\sqrt{x^{10}}=4\sqrt{(x)^{5}(x)^{5}}[/tex]
= [tex]4\sqrt{(x^{5})^{2}}[/tex]
= [tex]4[(x^{5})^{2}]^{\frac{1}{2}}[/tex]
= [tex][(x^{5})^{2\times \frac{1}{2}}][/tex] [Since [tex][a^{m}]^{n}=a^{m\times n}[/tex]
= [tex]4x^{5}[/tex]
Therefore, the expression equivalent to the given expression will be [tex]4x^{5}[/tex]