Respuesta :

gmany

[tex]4\sqrt{x^{10}}=4\sqrt{(x^5)^2}=4|x^5|[/tex]



[tex]\text{Used:}\\\\(a^n)^m=a^{n\cdot m}\\\\\sqrt{a^2}=|a|[/tex]

Answer:

[tex]4x^{5}[/tex]

Step-by-step explanation:

The given expression is [tex]4\sqrt{x^{10}}[/tex]

We have to simplify the given expression

[tex]4\sqrt{x^{10}}=4\sqrt{(x)^{5}(x)^{5}}[/tex]

= [tex]4\sqrt{(x^{5})^{2}}[/tex]

= [tex]4[(x^{5})^{2}]^{\frac{1}{2}}[/tex]

= [tex][(x^{5})^{2\times \frac{1}{2}}][/tex] [Since [tex][a^{m}]^{n}=a^{m\times n}[/tex]

= [tex]4x^{5}[/tex]

Therefore, the expression equivalent to the given expression will be [tex]4x^{5}[/tex]