Respuesta :

You multiply the two vectors to get an answer of 12.

Answer:

The value of [tex]a \cdot b =12[/tex]          

Step-by-step explanation:

Given : [tex]a = 6i-6j,  b = 4i + 2j[/tex]

To find : The value of a ⋅ b?

Solution :

We know that, The dot product of two vectors in form

[tex]v=ai+bj[/tex] and [tex]w=ci+dj[/tex]

Then, [tex]v \cdot w = ac + bd[/tex]

Applying the same in the given situation,

a=6 ,b=-6 ,c =4 ,d=2 and v=a , w=b

Substitute in the formula,

[tex]a \cdot b = (6)(4) + (-6)(2)[/tex]

[tex]a \cdot b =24-12[/tex]          

[tex]a \cdot b =12[/tex]

Therefore, The value of [tex]a \cdot b =12[/tex]