Respuesta :
Answer:
The value of [tex]a \cdot b =12[/tex]
Step-by-step explanation:
Given : [tex]a = 6i-6j, b = 4i + 2j[/tex]
To find : The value of a ⋅ b?
Solution :
We know that, The dot product of two vectors in form
[tex]v=ai+bj[/tex] and [tex]w=ci+dj[/tex]
Then, [tex]v \cdot w = ac + bd[/tex]
Applying the same in the given situation,
a=6 ,b=-6 ,c =4 ,d=2 and v=a , w=b
Substitute in the formula,
[tex]a \cdot b = (6)(4) + (-6)(2)[/tex]
[tex]a \cdot b =24-12[/tex]
[tex]a \cdot b =12[/tex]
Therefore, The value of [tex]a \cdot b =12[/tex]