Respuesta :

Let us rewrite the given expression:

[tex]\frac{1}{1+\sqrt{3}}[/tex]

Now in this case we have to rationalise the denominator.

So we multiply and divide by 1 - √3

[tex]\frac{1}{1+\sqrt{3}}*\frac{1-\sqrt{3}}{1-\sqrt{3}}[/tex]

The denominator can be simplified using the property:

[tex](a+b)(a-b)=a^{2}-b^{2}[/tex]

[tex]\frac{1-\sqrt{3}}{1^{2}-(\sqrt{3})^{2}}[/tex]

So finally on simplifying we will get:

[tex]\frac{1-\sqrt{3}}{-2}[/tex]



Answer:

D

Step-by-step explanation:

To find the quotient of the sure function 1/1+√3, we will rationalize the surd function by multiplying the numerator and the denominator of the surd by the conjugate of its denominator.

Given the denominator to be 1+√3, the conjugate of 1+√3 is 1-√3

Multiplying by 1-√3 will result in the following;

1/1+√3×1-√3/1-√3

= 1-√3/(1+√3)(1-√3)

= 1-√3/1-√3+√3-√9

= 1-√3/1-√9

= 1-√3/1-3

= 1-√3/-2

= -(1-√3)/2

= -1+√3/2

The right option is D -1+√3/2