Find the correct sum of each geometric sequence.
a1 = 3, a8 = 384, r = 2
a1 = 343, an = -1, r = -1/7
a1 = 625, n= 5, r = 3/5
a1 = 4, n = 5, r = -3
a1 = 2401, n = 5, r = -1/7

Respuesta :

A geometric sequence with first term "a" and common ratio "r" has "nth" term:

ar^(n-1)

And the sum of a geometric sequence with "n" terms, first term "a," and common ratio "r" has the sum "a(r^n - 1)/r - 1.

1.) 765

2.) 300

3.) 1441

4.) 244

5.) 2101

Answer:

1.765

2.301

3.1441

4.183

5.2101

Step-by-step explanation:

We are given that

1.[tex]a_1=3, a_8=384,r=2[/tex]

We know that sum of nth term in G.P is given by

[tex]S_n=\frac{a(r^n-1)}{r-1}[/tex] when r > 1

[tex] S_n=\frac{a(1-r^n)}{1-r}[/tex] when r < 1

n=8, r=2 a=3

Therefore,[tex]S_8=\frac{3((2)^8-1)}{2-1}[/tex] because r > 1

[tex]S_8=3\times (256-1)=765[/tex]

1. Sum of given G.P is 765

2.[tex]a_1=343,a_n=-1,r=-\frac{1}{7}[/tex]

nth term of G.P is given by the formula

[tex]a_n=ar^{n-1}[/tex]

Therefore , applying the formula

[tex]-1=343\times (\frac{-1}{7}}^{n-1}[/tex]

[tex]\frac{-1}{343}=(\frac{-1}{7})^{n-1}[/tex]

[tex](\frac{-1}{7})^3=(\frac{-1}{7})^{n-1}[/tex]

When base equal on both side then power should be equal

Then we get n-1=3

n=3+1=4

Applying the formula of sum of G.P

[tex]S_4=\frac{343(1-(\frac{-1}{7})^4)}{1-\frac{-1}{7}}[/tex] where r < 1

[tex] S_4=\frac{343(1+\frac{1}{343})}{\frac{8}{7}}[/tex]

[tex] S_4=343\times\frac{344}{343}\times\frac{7}{8}[/tex]

[tex]S_4=301[/tex]

3.[tex]a_1=625, n=5,r=\frac{3}{5} < 1[/tex]

Therefore, [tex] S_5=\frac{625(1-(\frac{3}{5})^5)}{1-\frac{3}{5}}[/tex]

[tex]S_5=625\times \frac{3125-243}{3125}\times \frac{5}{2}[/tex]

[tex]S_5=625\times\frac{2882}{3125}\times\frac{5}{2}[/tex]

[tex]S_5=1441[/tex]

4.[tex]a_1=4,n=5,r=-3[/tex]

[tex]S_5=\frac{4(1-(-3)^5}{1-(-3)}[/tex] where r < 1

[tex] S_5=\frac{3(1+243)}{1+3}[/tex]

[tex]S_5=3\times 61=183[/tex]

5.[tex]a_1=2402,n=5,r=\frac{-1}{7}[/tex]

[tex]S_5=\frac{2401(1-(\frac{-1}{7})^5)}{1-\frac{-1}{7}}[/tex] r < 1

[tex] S_5=\frac{2401(1+\frac{1}{16807})}{\frac{7+1}{7}}[/tex]

[tex] S_5=2401\times\frac{16808}{16807}\times\frac{7}{8}[/tex]

[tex]S_5=2101[/tex]