Respuesta :
For this case we have the following third degree polynomial:
[tex]x ^ 3 +27 [/tex]
By completely factoring the polynomial we have:
[tex](x + 3) (x ^ 2 - 3x + 9) [/tex]
We will verify that the factorization is correct.
For this, we make distributive property:
[tex](x ^ 3 - 3x ^ 2 + 9x) + (3x ^ 2 - 9x + 27) [/tex]
We add similar terms:
[tex]x ^ 3 + (-3x ^ 2 + 3x ^ 2) + (9x - 9x) + 27 x ^ 3 +27[/tex]
Therefore, the factorization is correct.
So, the other factor is:
[tex](x ^ 2 - 3x + 9)[/tex]
Answer:
the other factor is:
[tex](x ^ 2 - 3x + 9)[/tex]
[tex]x ^ 3 +27 [/tex]
By completely factoring the polynomial we have:
[tex](x + 3) (x ^ 2 - 3x + 9) [/tex]
We will verify that the factorization is correct.
For this, we make distributive property:
[tex](x ^ 3 - 3x ^ 2 + 9x) + (3x ^ 2 - 9x + 27) [/tex]
We add similar terms:
[tex]x ^ 3 + (-3x ^ 2 + 3x ^ 2) + (9x - 9x) + 27 x ^ 3 +27[/tex]
Therefore, the factorization is correct.
So, the other factor is:
[tex](x ^ 2 - 3x + 9)[/tex]
Answer:
the other factor is:
[tex](x ^ 2 - 3x + 9)[/tex]