Respuesta :

A.  f(1)=5   (as defined on the second line, x=1)   TRUE  because f(1)=5
B.  f(5)=5^2=25 (as defined on third line, x>1)   FALSE   because f(5) ≠ 1
C. f(-2)=2(-2)=-4  (as defined on first line, x<1)  FALSE   because f(-2) &ne; 4
D. f(2)=2^2=4  (as defined on third line, x>1)   TRUE   because f(2)=4

A piece wise function is used to illustrate functions of different input domain

The true statements are:

[tex](a)\ f(1) = 5[/tex]

[tex](d)\ f(2) = 4[/tex]

First, we test the options

[tex](a)\ f(1) = 5[/tex]

To calculate f(1), we make use of

[tex]f(x) = 5[/tex]

Because, the domain is [tex]x = 1[/tex]

So, we have:

[tex]f(x) = 5[/tex]

Substitute 1 for x

[tex]f(1) = 5[/tex]

Option (a) is true

[tex](b)\ f(5) = 1[/tex]

To calculate f(5), we make use of

[tex]f(x) =x^2[/tex]

Because, the domain is [tex]x > 1[/tex]

So, we have:

[tex]f(x) =x^2[/tex]

Substitute 5 for x

[tex]f(5) =5^2[/tex]

[tex]f(5) =25[/tex]

Option (b) is false

[tex](c)\ f(-2) = 4[/tex]

To calculate f(-2), we make use of

[tex]f(x) =2x[/tex]

Because, the domain is [tex]x < 1[/tex]

So, we have:

[tex]f(x) =2x[/tex]

Substitute -2 for x

[tex]f(-2) = 2 \times -2[/tex]

[tex]f(-2) = -4[/tex]

Option (c) is false

[tex](d)\ f(2) = 4[/tex]

To calculate f(2), we make use of

[tex]f(x) =x^2[/tex]

Because, the domain is [tex]x > 1[/tex]

So, we have:

[tex]f(x) =x^2[/tex]

Substitute 2 for x

[tex]f(2) = 2^2[/tex]

[tex]f(2) = 4[/tex]

Option (d) is true

Hence, the true statements are:

[tex](a)\ f(1) = 5[/tex]

[tex](d)\ f(2) = 4[/tex]

Read more about piece wise functions at:

https://brainly.com/question/2215108