The value of the given expression is 4
From the question, the given expression is
[tex](3^{8}\ .\ 2^{-5}\ . \ 9^{0})^{-2} \ . \ (\frac{2^{-2} }{3^{3} }) ^{4} \ . \ 3^{28}[/tex]
This becomes
[tex](3^{8} \times 2^{-5} \times 9^{0})^{-2} \times (\frac{2^{-2} }{3^{3} }) ^{4} \times 3^{28}[/tex]
Then, we get
[tex](3^{8} \times 2^{-5} \times 1)^{-2} \times (\frac{2^{-2} }{3^{3} }) ^{4} \times 3^{28}[/tex]
(NOTE: From one of the laws of indices, [tex]x^{0} =1[/tex])
[tex](3^{8} \times 2^{-5} )^{-2} \times (\frac{2^{-2\times 4} }{3^{3 \times 4} }) \times 3^{28}[/tex]
[tex]3^{8\times -2} \times 2^{-5 \times -2} \times \frac{2^{-8} }{3^{12} } \times 3^{28}[/tex]
[tex]3^{-16} \times 2^{10} \times \frac{2^{-8} }{3^{12} } \times 3^{28}[/tex]
This becomes
[tex]3^{-16} \times 3^{28} \times \frac{2^{-8} }{3^{12} } \times 2^{10}[/tex]
[tex]\frac{3^{-16} \times 3^{28}}{3^{12} } \times {2^{-8} \times 2^{10}[/tex]
From the laws indices, we have that
[tex]x^{y} \times x^{z} = x^{y+z}[/tex]
and
[tex]x^{y} \div x^{z} = x^{y-z}[/tex]
Therefore
[tex]\frac{3^{-16} \times 3^{28}}{3^{12} } \times {2^{-8} \times 2^{10} = 3^{-16+28-12} \times 2^{-8+10}[/tex]
[tex]= 3^{0} \times 2^{2}[/tex]
[tex]=1 \times 2^{2}[/tex]
[tex]= 1 \times 4[/tex]
= 4
Hence, the value of the given expression is 4
Learn more here: https://brainly.com/question/17706565