If f(x) = 2x + 3 and g(x) = x2 − 1, find the values of combining these functions. Match each combined function to its corresponding value. Tiles (f + g)(2) (f − g)(4) (f ÷ g)(2) (f × g)(1) Pairs -4 arrowBoth arrowBoth 10 arrowBoth 0 arrowBoth

Respuesta :

800
We determine the answers to these items by substituting the values before performing the operation.
1) (f + g)(2)                 f(2) = 2(2) + 3 = 7                g(2) = 2² - 1 = 3    (f + g)(2) = 7 + 3 = 10  (Answer for 1 is B)
2) (f - g)(4)                f(4) = 2(4) + 3 = 11               g(4) = 4² - 1 = 15     (f - g)(4) = 11 - 15 = -4   (Answer for 2 is A)
3) (f ÷ g)(2) (f x g)(1)
We already have the values of f(2) and g(2) above (in number 1)              f(1) = 2(1) + 3 = 5             g(1) = 1² - 1 = 0

The answer to this item is zero because any number multiplied to zero is zero. Letter C. 

Answer:

[tex](f+g)(2)=10[/tex]

[tex](f-g)(4)=-4[/tex]

(f÷ g)(2)=[tex]\frac{7}{3}[/tex]

[tex](f*g)(1)=0[/tex]

Step-by-step explanation:

[tex]f(x) = 2x + 3[/tex] and [tex]g(x) = x^2 - 1[/tex]

Lets find f(2) , f(4) , g(4) and g(2)

[tex]f(x) = 2x + 3[/tex

[tex]f(2) = 2(2) + 3=7[/tex]

[tex]f(4) = 2(4) + 3=11[/tex]

[tex]f(1) = 2(1) + 3=5[/tex]

[tex]g(x) = x^2 - 1[/tex]

[tex]g(2) = 2^2 - 1=3[/tex]

[tex]g(4) = 4^2 - 1=15[/tex]

[tex]g(1) = 1^2 - 1=0[/tex]

LEts find (f+g)(2)

[tex](f+g)(2)= f(2) + g(2)=7+3=10[/tex]

[tex](f-g)(4)= f(4) - g(4)=11-15=-4[/tex]

(f÷ g)(2)=[tex]\frac{f(2)}{g(2)} =\frac{7}{3}[/tex]

[tex](f*g)(1)= f(1) * g(1)=5*0=0[/tex]