Find the perimeter of triangle ABC.
9 sqrt 84
9 sqrt 2-sqrt 82
18+sqrt 82
none of the above.
the coordinates of the triangle are (2,2) (6,6) (7,-3)

Respuesta :

By definition, the perimeter of the triangle is the sum of its sides.
 We must then use the formula of distance between points:
 [tex]d = \sqrt{(x2-x1) ^ 2 + (y2-y1) ^ 2} [/tex]
 We now look for the longitus for each of the sides:
 
 For L1:
 [tex]L1 = \sqrt{(6-2)^2 + (6-2)^2} [/tex]
 [tex]L1 = \sqrt{32} [/tex]
 [tex]L1 = 4\sqrt{2} [/tex]

 For L2:
 [tex]L2 = \sqrt{(7-2)^2 + (-3-2)^2} [/tex]
 [tex]L2 = \sqrt{50} [/tex]
 [tex]L2 = 5\sqrt{2} [/tex]

 For L3:
 [tex]L3 = \sqrt{(7-6)^2 + (-3-6)^2} [/tex]
 [tex]L3 = \sqrt{82} [/tex]
 
 Then, the perimeter is given by:
 P = L1 + L2 + L3
 Substituting values we have:
 [tex]P = 4\sqrt{2} + 5\sqrt{2} + \sqrt{82} P = 9\sqrt{2} + \sqrt{82} [/tex]

 Answer:
 
the perimeter of triangle ABC is:
 
none of the above.

Answer:

the correct answer is the second (b) choice

9rad2 + rad82

i just took the test and got it right