10 POINTS!

Find the product of z1 and z2, where z1 = 8(cos 40° + i sin 40°) and z2 = 4(cos 135° + i sin 135°).

A) 32(cos 40° + i sin 40°)

B) 12(cos 175° + i sin 175°)

C) 32(cos 5400° + i sin 5400°)

D) 32(cos 175° + i sin 175°)

Respuesta :

z1 × z2 = 32(cos(40° + 135°) + i sin ( 40° + 135°)
z1 × z2 = 32 (cos(175°) +i sin (175°)

Answer:

Option D is correct.i.e., [tex]32\times(cos175^{\circ}+\imath sin175^{\circ})[/tex]

Step-by-step explanation:

Given: [tex]z_1=8(cos40^{\circ}+\imath sin40^{\circ})[/tex]  and  [tex]z_2=4(cos135^{\circ}+\imath sin135^{\cric})[/tex]

To find: Product of [tex]z_1[/tex] and [tex]z_2[/tex]

[tex]z_1\times z_2[/tex]

[tex]\implies8(cos40^{\circ}+\imath sin40^{\circ})\times4(cos135^{\circ}+\imath sin135^{\circ})[/tex]

[tex]\implies8\times4\times(cos40^{\circ}+\imath sin40^{\circ})(cos135^{\circ}+\imath sin135^{\circ})[/tex]

[tex]\implies32\times(cos40^{\circ}\times cos135^{\circ}+ cos40^{\circ}\times\imath sin135^{\circ}+\imath sin40^{\circ}\times cos135^{\circ}+\imath sin40^{\circ}\times\imath sin135^{\circ})[/tex]

[tex]\implies32\times(cos40^{\circ}\times cos135^{\circ}+\imath cos40^{\circ}\times sin135^{\circ}+\imath sin40^{\circ}\times cos135^{\circ}+(\imath)^2 sin40^{\circ}\times sin135^{\circ})[/tex]

[tex]\implies32\times(cos40^{\circ}\times cos135^{\circ}+\imath cos40^{\circ}\times sin135^{\circ}+\imath sin40^{\circ}\times cos135^{\circ}-1\times sin40^{\circ}\times sin135^{\circ})[/tex]

[tex]\implies32\times(cos40^{\circ}\times cos135^{\circ}-sin40^{\circ}\times sin135^{\circ}+\imath (cos40^{\circ}\times sin135^{\circ}+sin40^{\circ}\times cos135^{\circ}))[/tex]

Using, Cos( A + B ) = CosA CosB - SinA SinB

and      Sin( A + B ) = SinA CosB + CosA SinB

[tex]\implies32\times(cos(40^{\circ}+135^{\cric})+\imath (sin(40^{\cric}+135^{\circ}))[/tex]

[tex]\implies32\times(cos175{\circ}+\imath sin175^{\cric})[/tex]

Therefore, Option D is correct.i.e., [tex]32\times(cos175^{\circ}+\imath sin175^{\circ})[/tex]