A rectangular prism has a length of 11 3/4 inches, a width of 9 1/2 inches, and a height of 8 inches. How many cubes with 1/4 inch edges can fit in the rectangular prism?

Respuesta :

Answer:

[tex]57,152\ cubes[/tex]

Step-by-step explanation:

we know that

The volume of a rectangular prism is equal to

[tex]V=LWH[/tex]

we have

[tex]L=11\frac{3}{4}\ in[/tex]

[tex]W=9\frac{1}{2}\ in[/tex]

[tex]H=8\ in[/tex]

step 1

Convert mixed number to an improper fractions

[tex]L=11\frac{3}{4}\ in=\frac{11*4+3}{4}=\frac{47}{4}\ in[/tex]

[tex]W=9\frac{1}{2}\ in=\frac{9*2+1}{2}=\frac{19}{2}\ in[/tex]

step 2

Find the volume of the rectangular prism

[tex]V=(\frac{47}{4})(\frac{19}{2})(8)=893\ in^{3}[/tex]

step 3

Find the volume of the cube

The volume of the cube is equal to

[tex]V=(\frac{1}{4})^{3}=\frac{1}{64}\ in^{3}[/tex]

step 4

Divide the volume of the rectangular prism by the volume of the cube

[tex]893/(1/64)=57,152\ cubes[/tex]