contestada

Find the derivative using composition of functions of
[tex] \sqrt[3]{ {x}^{2} } [/tex]

Respuesta :

[tex]\bf \sqrt[3]{x^2}\implies \left(\stackrel{outer~function}{\left( \stackrel{inner~function}{x} \right) }\right)^{\frac{2}{3}}\implies \stackrel{\qquad \qquad chain~rule}{\stackrel{outer}{\cfrac{2}{3}x^{-\frac{1}{3}}}}\cdot \stackrel{inner}{1} \\\\\\ \cfrac{2}{3x^{\frac{1}{3}}}\implies \cfrac{2}{3\sqrt[3]{x}}[/tex]

so, the function is really a composite function, you could think of it 

[tex]\bf \begin{cases} f(x)=x\\ g(x)=x^{\frac{2}{3}} \end{cases}\implies g(~~f(x)~~)=(x)^{\frac{2}{3}}[/tex]