contestada

what is f(g(x)) if f(x)is
[tex] \frac{2}{x - 3} [/tex]
And g(x) is
[tex] \frac{2}{x} + 3[/tex]
and also what is g(f(x))?

Respuesta :

[tex]\bf \begin{cases} f(x)=\cfrac{2}{x-3}\\\\ g(x)=\cfrac{2}{x}+3 \end{cases} \\\\\\ f(~~g(x)~~)=\cfrac{2}{g(x)-3}\implies f(~~g(x)~~)=\cfrac{2}{\frac{2}{x}+3 -3} \\\\\\ f(~~g(x)~~)=\cfrac{2}{\frac{2}{x}}\implies f(~~g(x)~~)=\cfrac{\quad \frac{2}{1}\quad }{\frac{2}{x}} \\\\\\ f(~~g(x)~~)=\cfrac{2}{1}\cdot \cfrac{x}{2} \implies \boxed{f(~~g(x)~~)=x}[/tex]

[tex]\bf g(~~f(x)~~)=\cfrac{2}{f(x)}+3\implies g(~~f(x)~~)=\cfrac{2}{\frac{2}{x-3}}+3 \\\\\\ g(~~f(x)~~)=\cfrac{\frac{2}{1}}{\frac{2}{x-3}}+3\implies g(~~f(x)~~)=\cfrac{2}{1}\cdot \cfrac{x-3}{2}+3 \\\\\\ g(~~f(x)~~)=x-3+3\implies \boxed{g(~~f(x)~~)=x}[/tex]