Respuesta :

B. It’s just simplified.

If  two figures are similar, the ratio of their corresponding sides are equal

Let us take the ratio of the radius to the height of the given cylinder. This gives us,

[tex]\frac{radius}{height}=\frac{2.8}{2.4}[/tex]

In the simplest form, we have,

[tex]\frac{radius}{height}=\frac{7}{6}[/tex]

Let us now find out which of the cylinders in the option has the same ratio,

For option A,

[tex]\frac{radius}{height}=\frac{1.8}{1.4}[/tex]

In the simplest form, we have,

[tex]\frac{radius}{height}=\frac{9}{7}[/tex]


For option B,

[tex]\frac{radius}{height}=\frac{1.4}{1.2}[/tex]

In the simplest form, we have,

[tex]\frac{radius}{height}=\frac{7}{6}[/tex]

For option C,

[tex]\frac{radius}{height}=\frac{5.6}{4.2}[/tex]

In the simplest form, we have,

[tex]\frac{radius}{height}=\frac{4}{3}[/tex]


For option D,

[tex]\frac{radius}{height}=\frac{2.4}{2.8}[/tex]

In the simplest form, we have,

[tex]\frac{radius}{height}=\frac{6}{7}[/tex]


Hence the correct answer is B