Respuesta :
[tex]f(x) = \: {x}^{2} - 5x - 6 \\ \\ f(x) = \: {x}^{2} - 6x + x - 6 \\ \\ f(x) = \: (x - 6)(x + 1) = \: 0 \\ \\ || \: x = \: 6 || \: \: \: \: or \: \: \: || x = - 1 || \: \: \: \: \: Ans.[/tex]
Hope it helps you :)
Hope it helps you :)
The zeros of the polynomial function f(x) are x = 6 and x = -1.
Factorization method
Let the function f(x) be
[tex]$f(x)=x^{2}-5 x-6$[/tex]
By using the factorization method, we get
[tex]$f(x)=x^{2}-6 x+x-6$[/tex]
Note that -6 +1 = 5 and [tex]- 6 * 1 = - 6[/tex]
So we find: [tex]$f(x)=x^{2}-5 x-6$[/tex]
f(x) = (x-6)(x+1) = 0
[tex]$\|x=6\|$[/tex] and [tex]$\quad\|x=-1\|$[/tex]
Hence the zeros of the polynomial function f(x) are x = 6 and x = -1.
Therefore, the correct answer is option C. x = -6 and x = 1.
To learn more about the factorization method
https://brainly.com/question/11434122
#SPJ2