Respuesta :
we know that
red marbies=3------> r=3
green marbies=4----> g=4
blue marbies=3-----> b=3
total marbles in the bag=r+g+b-----> 3+4+3-----> 10
a) probability of randomly selecting a green (g) marble
P(green)=g/total marbles------> 4/10-----> 2/5
b) probability of randomly selecting a red (r) marble
the marble is replaced so we have the same total marbles
P(red)=r/total marbles------> 3/10
c) Total probability of selecting this path is:
P(green)*P(red)-----> (2/5)*(3/10)-----> 6/50----> 3/25----> 0.12 (12%)
the answer is
0.12 (12%)
red marbies=3------> r=3
green marbies=4----> g=4
blue marbies=3-----> b=3
total marbles in the bag=r+g+b-----> 3+4+3-----> 10
a) probability of randomly selecting a green (g) marble
P(green)=g/total marbles------> 4/10-----> 2/5
b) probability of randomly selecting a red (r) marble
the marble is replaced so we have the same total marbles
P(red)=r/total marbles------> 3/10
c) Total probability of selecting this path is:
P(green)*P(red)-----> (2/5)*(3/10)-----> 6/50----> 3/25----> 0.12 (12%)
the answer is
0.12 (12%)
Answer:
4/10(3/10)
Step-by-step explanation:
there are 4 green marbles out of a total of 10 so 4/10
there are 3 red marbles out of a total of 10 so 3/10