Respuesta :
Tom simplify the given expression we proceed as follows:
(x^4 − 9x + 5x^7) + (5x − 10 + 3x^4 − 2x^2)
We open the parenthesis
x^4-9x+5x^7+5x-10+3x^4-2x^2
put like terms together:
x^4+3x^4-9x+5x+5x^7-10-2x^2
simplifying the above we get:
4x^4-4x+5x^7-10-2x^2
Thus can be rewritten in order of the highest degree as:
5x^7+4x^4-2x^2-4x-10
Answer: 5x^7+4x^4-2x^2-4x-10
(x^4 − 9x + 5x^7) + (5x − 10 + 3x^4 − 2x^2)
We open the parenthesis
x^4-9x+5x^7+5x-10+3x^4-2x^2
put like terms together:
x^4+3x^4-9x+5x+5x^7-10-2x^2
simplifying the above we get:
4x^4-4x+5x^7-10-2x^2
Thus can be rewritten in order of the highest degree as:
5x^7+4x^4-2x^2-4x-10
Answer: 5x^7+4x^4-2x^2-4x-10
Answer:
5x7 + 4x4 - 2x2 - 4x - 10
Step-by-step explanation:
To add both polynomials, there must be a rearrangement of the terms of both polynomials after removing he parenthesis. The rearrangement is such that items are group together based on the power of x. As such,
(x4 − 9x + 5x7) + (5x − 10 + 3x4 − 2x2)
= x4 − 9x + 5x7 + 5x − 10 + 3x4 − 2x2
Rearranging...
= 5x7 + x4 + 3x4 -2x2 - 9x + 5x - 10
simplifying,
= 5x7 + 4x4 - 2x2 - 4x - 10