Respuesta :

so the triangle looks more or less like the one in the picture below.

let's check how long each side is, TV, VS and ST.

[tex]\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ T(\stackrel{x_1}{1}~,~\stackrel{y_1}{1})\qquad V(\stackrel{x_2}{9}~,~\stackrel{y_2}{2})\qquad \qquad % distance value d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ TV=\sqrt{(9-1)^2+(2-1)^2}\implies TV=\sqrt{8^2+1^2}\implies \boxed{TV=\sqrt{65}}\\\\ -------------------------------[/tex]

[tex]\bf V(\stackrel{x_2}{9}~,~\stackrel{y_2}{2})\qquad S(\stackrel{x_2}{7}~,~\stackrel{y_2}{7})\qquad \qquad VS=\sqrt{(7-9)^2+(7-2)^2} \\\\\\ VS=\sqrt{(-2)^2+5^2}\implies\boxed{ VS=\sqrt{29}}\\\\ -------------------------------\\\\ S(\stackrel{x_2}{7}~,~\stackrel{y_2}{7})\qquad T(\stackrel{x_1}{1}~,~\stackrel{y_1}{1})\qquad \qquad ST=\sqrt{(1-7)^2+(1-7)^2} \\\\\\ ST=\sqrt{(-6)^2+(-6)^2}\implies \boxed{ST=\sqrt{72}}[/tex]

so, notice, the sides are all of different lengths, thus the triangle is scalene.
Ver imagen jdoe0001