Respuesta :

did you get the answer?

Because of lack of additional information, let us assume that our horizontal  ellipse is centered at the origin. We know that the equation of a horizontal ellipse centered at the the origin is given by:

[tex] \frac{x^2}{a^2} +\frac{y^2}{b^2}=1  [/tex]

Such that [tex] a>b [/tex] (condition for a horizontal ellipse)

Where [tex] a=\frac{1}{2}(major axis)=\frac{1}{2}\times 50=25  [/tex]

Likewise, [tex] b=\frac{1}{2}(minor axis)=\frac{1}{2}\times 20=10  [/tex]

Thus, the equation of our horizontal ellipse will be:

[tex] \frac{x^2}{25^2} +\frac{y^2}{10^2}=1   [/tex]

Please find the attached file for the graph of our horizontal ellipse.



Ver imagen Vespertilio