What is the following product? Assume x>0 (4x√5x^2 +2x^2√6)^2 A.80x^4+8x^4√30x+24x^4 B.80x^6+8x^5+8x^5√30x+24x^4 C.104x^4 D.104x^4+16x^4√30

Respuesta :

we are given

[tex](4x\sqrt{5x^2} +2x^2\sqrt{6} )^2[/tex]

we can expand it

[tex](4x\sqrt{5x^2} +2x^2\sqrt{6} )^2=(4x\sqrt{5x^2} +2x^2\sqrt{6} )(4x\sqrt{5x^2} +2x^2\sqrt{6} )[/tex]

we can simplify it

[tex](4x\sqrt{5x^2} +2x^2\sqrt{6} )^2=(4x\sqrt{5}x +2x^2\sqrt{6} )(4x\sqrt{5}x +2x^2\sqrt{6} )[/tex]

[tex](4x\sqrt{5x^2} +2x^2\sqrt{6} )^2=(4x^2\sqrt{5} +2x^2\sqrt{6} )(4x^2\sqrt{5} +2x^2\sqrt{6} )[/tex]

now, we can FOIL it

we get

[tex](4x\sqrt{5x^2} +2x^2\sqrt{6} )^2=(4x^2\sqrt{5})^2 +2*2x^2\sqrt{6} *4x^2\sqrt{5} +(2x^2\sqrt{6} )^2[/tex]

now, we can simplify it

[tex]=4^2\cdot \:5x^4+16\sqrt{30}x^4+2^2\cdot \:6x^4[/tex]

[tex]=80x^4+16\sqrt{30}x^4+24x^4[/tex]

now, we can combine like terms

[tex]\mathrm{Add\:similar\:elements:}\:80x^4+24x^4=104x^4[/tex]

[tex]=104x^4+16\sqrt{30}x^4[/tex]

so, option-D.............Answer

Answer: D

Step-by-step explanation: