use the unit circle to find the inverse function value in degrees cos^-1 (sqrt3/2)
60 degrees
30 degrees
240 degrees
150 degrees

Respuesta :

Answer:its 150 degrees

Step-by-step explanation:

thats the answer

cos^-1 (sqrt3/2) = 30 degrees

The correct answer is option (B) 30 degrees.

What is inverse function?

"For a function y = f(x), an inverse function is [tex]f^{-1}(y)=x[/tex]"

For given example,

We need to find the inverse function value in degrees cos^-1 (sqrt3/2).

Let, x be the inverse function value.

[tex]\Rightarrow x = cos^{-1}(\frac{\sqrt{3} }{2})\\\\\Rightarrow cos(x) = \frac{\sqrt{3} }{2}[/tex]

We know, cos(30°) = √3/2

⇒ cos(x) = cos(30°)

⇒ x = 30°

Therefore, cos^-1 (sqrt3/2) = 30 degrees

The correct answer is option (B) 30 degrees.

Learn more about the inverse function here:

brainly.com/question/15670297

#SPJ2