Respuesta :
we have that
x²/9 +y²/4=1
a=3
b=2
Find c, the distance from the center to a focus.
c²=a²-b²------> c²=9-4----> c²=5-----> c=√5
(h,k)----> (0,0)
The first focus------> (h+c,k)-----> (√5,0)
The second focus------> (h-c,k)-----> (-√5,0)
the answer is
(√5,0)
x²/9 +y²/4=1
a=3
b=2
Find c, the distance from the center to a focus.
c²=a²-b²------> c²=9-4----> c²=5-----> c=√5
(h,k)----> (0,0)
The first focus------> (h+c,k)-----> (√5,0)
The second focus------> (h-c,k)-----> (-√5,0)
the answer is
(√5,0)
Answer:
Coordinates of foci are [tex](-\sqrt{5},0)\boldsymbol{\texttt{ and }}(\sqrt{5},0)[/tex]
Not given in option.
Step-by-step explanation:
For the ellipse
[tex]\frac{x^2}{a^2}+\frac{y^2}{b^2}=1[/tex] foci are at (-c,0) and (c,0), where [tex]c=\sqrt{a^2-b^2}[/tex]
Comparing
[tex]\frac{x^2}{9}+\frac{y^2}{4}=1\boldsymbol{\texttt{ with }}\frac{x^2}{a^2}+\frac{y^2}{b^2}=1[/tex]
a² = 9 and b² = 4
a = 3 and b =2
So [tex]c=\sqrt{3^2-2^2}=\sqrt{5}[/tex]
Coordinates of foci are [tex](-\sqrt{5},0)\boldsymbol{\texttt{ and }}(\sqrt{5},0)[/tex]
Not given in option.