Respuesta :
Explanation :
It is given that,
Charge, [tex]q=1.3\times 10^{-16}\ C[/tex]
Electric field, [tex]E=3.2\times 10^2\ N/C[/tex]
Distance, [tex]d=1.1\times 10^{-2}\ m[/tex]
The work done is stored in the form of potential energy.
[tex]W=F.d[/tex]
[tex]\because F=qE[/tex]
So, [tex]W=qE\ d[/tex]
[tex]W=1.3\times 10^{-16}\ C\times 3.2\times 10^2\ N/C\times 1.1\times 10^{-2}\ m[/tex]
[tex]W=4.576\times 10^{-16}\ J[/tex]
Hence, this is the required solution.
Answer:
[tex]U=-4.58*10^{-16}J[/tex]
Explanation:
The electrostatic potential energy of one point charge in the presence of an electric field is defined as the negative of the work done by the electrostatic force:
[tex]U=-W(1)[/tex]
The work done by the electrostatic force is:
[tex]W=Fd\\F=qE\\W=qEd(2)[/tex]
Replacing (2) in (1) and solving:
[tex]U=-qEd\\U=-(1.3*10^{-16}C)(3.2*10^2\frac{N}{C})(1.1*10^{-2}m)\\U=-4.58*10^{-16}J[/tex]