Respuesta :

The first step for solving this expression is to multiply the parenthesis.
[tex] \sqrt{45} x^{2} + 2\sqrt{90} x + \sqrt{75}x + 2\sqrt{150} [/tex]
Simplify the first radical.
[tex] 3\sqrt{5} x^{2} + 2\sqrt{90} x + \sqrt{75}x + 2\sqrt{150} [/tex]
Simplify the second radical.
[tex] 3\sqrt{5} x^{2} + 2X3\sqrt{10} x + \sqrt{75}x + 2\sqrt{150} [/tex]
Simplify the third radical.
[tex] 3\sqrt{5} x^{2} + 2X3\sqrt{10} x + 5\sqrt{3}x + 2\sqrt{150} [/tex]
Simplify the final radical.
[tex] 3\sqrt{5} x^{2} + 2X3\sqrt{10} x + 5\sqrt{3}x + 10\sqrt{6} [/tex]
Lastly,, calculate the product of 2 × 3[tex] \sqrt{10} [/tex]x to get your final answer.
[tex] 3\sqrt{5} x^{2} + 6\sqrt{10} x + 5\sqrt{3}x + 10\sqrt{6} [/tex]
Let me know if you have any further questions.
:)