Respuesta :

ali015
To find slope, use the equation:
[tex]slope = \frac{ y_{2} - y_{1} }{x_{2}-x_{1}} [/tex]
where [tex]x_{2}[/tex] and [tex]y_{2}[/tex] are the x and y values of one coordinate point, and [tex]x_{1}[/tex] and [tex]y_{1}[/tex] are the x and y values of another coordinate point . Since we are given two coordinate points, that means we can find the slope using the slope equation.

Let's choose (6, 0) as your [tex](x_{2}, y_{2})[/tex] point and (0, -2) as your [tex](x_{1}, y_{1})[/tex] point, but you can switch those if you want! That makes [tex]x_{2} = 6, y_{2} = 0[/tex] and [tex]x_{1} = 0, y_{1} = -2[/tex]. Plug these values into the slope equation and simplify:

[tex] \frac{ y_{2} - y_{1} }{x_{2}-x_{1}} \\ = \frac{ 0 - (-2) }{6-0} \\ = \frac{2}{6} \\ = \frac{1}{3} [/tex]


-----


Answer: Slope = [tex]\frac{1}{3}[/tex]