Respuesta :

4cos(120) + 4isin(120)

Answer:

The required trigonometric form is [tex]4(\cos(60)-i\sin(60))[/tex]

Step-by-step explanation:

Given : Complex number [tex]-2+2\sqrt{3}i[/tex]

To find : Express the complex number in trigonometric form?

Solution :

The complex number [tex]a+ib[/tex] trigonometric form is [tex]r(\cos\theta+i\sin\theta)[/tex]                      

Where, [tex]r=\sqrt{a^2+b^2}[/tex]

and [tex]\theta=\tan^{-1}(\frac{b}{a})[/tex]

On comparing with given complex number  [tex]-2+2\sqrt{3}i[/tex]

a=-2 and [tex]b=2\sqrt{3}[/tex]

Substitute the value,

[tex]r=\sqrt{a^2+b^2}[/tex]

[tex]r=\sqrt{(-2)^2+(2\sqrt{3})^2}[/tex]

[tex]r=\sqrt{4+12}[/tex]

[tex]r=\sqrt{16}[/tex]

[tex]r=4[/tex]

[tex]\theta=\tan^{-1}(\frac{b}{a})[/tex]

[tex]\theta=\tan^{-1}(\frac{2\sqrt3}{-2})[/tex]

[tex]\theta=\tan^{-1}(-sqrt3)[/tex]

[tex]\theta=\tan^{-1}(\tan(-60))[/tex]

[tex]\theta=-60[/tex]

Substituting all values in the formula,

[tex]r(\cos\theta+i\sin\theta)[/tex]

[tex]4(\cos(-60)+i\sin(-60))[/tex]

[tex]4(\cos(60)-i\sin(60))[/tex]

Therefore, The required trigonometric form is [tex]4(\cos(60)-i\sin(60))[/tex]