Respuesta :
Answer:
The equation of the line is [tex]y=\frac{-1}{2}x+1[/tex]
Step-by-step explanation:
1. The equation of the line that passes through two points can be expresed as:
[tex]\frac{y-y_1}{x-x_1}=\frac{y_2-y_1}{x_2-x_1}[/tex] (Eq.1)
where [tex]x_{1}[/tex], [tex]x_{2}[/tex], [tex]y_{1}[/tex] and [tex]y_{2}[/tex] are the given points.
2. Name the points:
[tex]x_{1}[/tex]=-6
[tex]x_{2}[/tex]=-2
[tex]y_{1}[/tex]=4
[tex]y_{2}[/tex]=2
3. Replace the points in the Eq.1:
[tex]\frac{y-4}{x-(-6)}=\frac{2-4}{-2-(-6)}[/tex]
[tex]\frac{y-4}{x+6}=\frac{2-4}{-2+6}[/tex]
[tex]\frac{y-4}{x+6}=\frac{-2}{4}[/tex]
[tex]\frac{4(y-4)}{x+6}=-2[/tex]
[tex]4(y-4)=-2(x+6)[/tex]
[tex]4y-16=-2x-12[/tex]
[tex]4y=-2x-12+16[/tex]
[tex]4y=-2x+4[/tex]
[tex]y=\frac{-2x+4}{4}[/tex]
[tex]y=\frac{-2x}{4}+\frac{4}{4}[/tex]
[tex]y=\frac{-1}{2}x+1[/tex]