Respuesta :

The answer is y= -1/2x + 1

Answer:

The equation of the line is [tex]y=\frac{-1}{2}x+1[/tex]

Step-by-step explanation:

1. The equation of the line that passes through two points can be expresed as:

[tex]\frac{y-y_1}{x-x_1}=\frac{y_2-y_1}{x_2-x_1}[/tex] (Eq.1)

where [tex]x_{1}[/tex], [tex]x_{2}[/tex], [tex]y_{1}[/tex] and [tex]y_{2}[/tex] are the given points.

2. Name the points:

[tex]x_{1}[/tex]=-6

[tex]x_{2}[/tex]=-2

[tex]y_{1}[/tex]=4

[tex]y_{2}[/tex]=2

3. Replace the points in the Eq.1:

[tex]\frac{y-4}{x-(-6)}=\frac{2-4}{-2-(-6)}[/tex]

[tex]\frac{y-4}{x+6}=\frac{2-4}{-2+6}[/tex]

[tex]\frac{y-4}{x+6}=\frac{-2}{4}[/tex]

[tex]\frac{4(y-4)}{x+6}=-2[/tex]

[tex]4(y-4)=-2(x+6)[/tex]

[tex]4y-16=-2x-12[/tex]

[tex]4y=-2x-12+16[/tex]

[tex]4y=-2x+4[/tex]

[tex]y=\frac{-2x+4}{4}[/tex]

[tex]y=\frac{-2x}{4}+\frac{4}{4}[/tex]

[tex]y=\frac{-1}{2}x+1[/tex]