Respuesta :
The angles of the triangle are given as to have measures of 45°-45°-90°. This entails that the triangle is an isosceles triangle where the 2 legs of the triangle are of equal length. We calculate as follows:
c² = a² + b²
c² = 2a²
4² = 2a²
a = 2√2
Hope this answers the question.
c² = a² + b²
c² = 2a²
4² = 2a²
a = 2√2
Hope this answers the question.
Hello!
Since this triangle is what I like to call a "45er", and both legs of a 45er are equal, we can now apply the Pythagorean Theorem to find the measure of the hypotenuse.
[tex]12^2 + 12^2 = c^2 144 + 144 = 288 \sqrt{288} = 16.9 [/tex] (Rounded)
Your answer is 16.9. Round this to 17 if the question is looking for a whole number. :)
Since this triangle is what I like to call a "45er", and both legs of a 45er are equal, we can now apply the Pythagorean Theorem to find the measure of the hypotenuse.
[tex]12^2 + 12^2 = c^2 144 + 144 = 288 \sqrt{288} = 16.9 [/tex] (Rounded)
Your answer is 16.9. Round this to 17 if the question is looking for a whole number. :)