Respuesta :
Answer is: the true volume of the flask is 10.2163 grams.
d(H₂O) = 0.9981 g/mL; density of water at 20°C.
V(H₂O) = 10 mL; volume of water.
m(H₂O) = d(H₂O) · V(H₂O).
m(H₂O) = 0.9981 g/mL · 10 mL.
m(H₂O) = 9.9981 g.
m(empty flask) = m(filled flask) - m(H₂O).
m(empty flask) = 20.2144 g - 9.9981 g.
m(empty flask) = 10.2163 g.
d(H₂O) = 0.9981 g/mL; density of water at 20°C.
V(H₂O) = 10 mL; volume of water.
m(H₂O) = d(H₂O) · V(H₂O).
m(H₂O) = 0.9981 g/mL · 10 mL.
m(H₂O) = 9.9981 g.
m(empty flask) = m(filled flask) - m(H₂O).
m(empty flask) = 20.2144 g - 9.9981 g.
m(empty flask) = 10.2163 g.
Explanation:
It is known that density of water at [tex]20^{o}C[/tex] is 998,29 [tex]kg/m^{3}[/tex] or 0.998 g/ml (as 1 [tex]kg/m^{3}[/tex] = 0.001 g/ml).
Therefore, calculate mass of water as follows.
Mass of water = Final mass - initial mass
= 20.2144 g - 10.2634 g
= 9.951 g
As we known that density is the amount of mass present in a unit volume.
Mathematically, Density = [tex]\frac{mass}{volume}[/tex]
Therefore, putting the given values into the above formula we will calculate the volume as follows.
Density = [tex]\frac{mass}{volume}[/tex]
0.998 g/ml = [tex]\frac{9.951 g}{Volume}[/tex]
Volume = 9.97 ml
Thus, we can conclude that volume of the flask at [tex]20^{o}C[/tex] is 9.97 ml.