Respuesta :
[tex]m(final)=m(initial)*( \frac{1}{2} )^{ \frac{time}{half-life}
m(final)= (1/8) *m(initial)
[/tex]
[tex] \frac{1}{8} m(initial)=m(initial)*( \frac{1}{2})^{ \frac{time}{halg-life} } [/tex]
[tex] \frac{1}{8} = \left( \frac{1}{2} \right)^{\frac{time}{30} } [/tex]
[tex]( \frac{1}{2})^{3}= (\frac{1}{2} )^{ \frac{time}{30}} \\ \\ 3= \frac{time}{30} \\ \\ time = 90 (years)[/tex]
[tex] \frac{1}{8} m(initial)=m(initial)*( \frac{1}{2})^{ \frac{time}{halg-life} } [/tex]
[tex] \frac{1}{8} = \left( \frac{1}{2} \right)^{\frac{time}{30} } [/tex]
[tex]( \frac{1}{2})^{3}= (\frac{1}{2} )^{ \frac{time}{30}} \\ \\ 3= \frac{time}{30} \\ \\ time = 90 (years)[/tex]
Answer:
90 years
Explanation:
it takes three halves of one to get to 1/8.
So 30 times 3 = 90