Respuesta :

This can be rewritten as
   (x -6)² = 90 . . . . . the left side is already a perfect square
   x -6 = ±√90 . . . . . take the square root
   x = 6 ±3√10 . . . . add 6

Answer:

Using the identity rule:

[tex](a-b)^2 = a^2-2ab+b^2[/tex]

Given the equation:

[tex]x^2-12x+36 = 90[/tex]

Rewrite the above equation as:

[tex]x^2-2 \cdot x \cdot 6+6^2 = 90[/tex]

Apply the identity rule:

[tex](x-6)^2 = 90[/tex]

Take square root to both sides we have;

[tex]x-6 = \pm \sqrt{90}[/tex]

Add 6 to both sides we have;

[tex]x = 6\pm \sqrt{90}[/tex]

or

[tex]x = 6 \pm 3\sqrt{10}[/tex]

Therefore, the value of x are:

[tex]6+3\sqrt{10}[/tex] and [tex]6-3\sqrt{10}[/tex]