Which of the following begins the two main parts of a direct proof of a∪(b∩c) = (a∪b) ∩ (a∪c)? 1) Assume a∪(b∩c) = (a∪b) ∩ (a∪c) and prove a⊆(a∪b) ∩ (a∪c) and (a∪b) ∩ (a∪c)⊆a 2) Assume a⊆(a∪b) ∩ (a∪c) and prove a∪(b∩c) = (a∪b) ∩ (a∪c) 3) Assume (a∪b) ∩ (a∪c)⊆a and prove a∪(b∩c) = (a∪b) ∩ (a∪c) 4) Assume a∪(b∩c) = (a∪b) ∩ (a∪c) and prove (a∪b) ∩ (a∪c)⊆a