Use an appropriate form of the chain rule to find (dz) /(du) and (dz) /(dv) .
z = (x) /(y) ; x = 4cosu, y = 3sinv
Enter your answers in terms of u and v.
a) (delz) /(delu) = -4sin(u) /(3cos(v) ) , (delz) /(delv) = 4cos(u) /(3sin(v) )
b) (delz) /(delu) = -4cos(u) /(3sin(v) ) , (delz) /(delv) = 4sin(u) /(3cos(v) )
c) (delz) /(delu) = -4sin(u) /(3sin(v) ) , (delz) /(delv) = 4cos(u) /(3cos(v) )
d) (delz) /(delu) = -4cos(u) /(3cos(v) ) , (delz) /(delv) = 4sin(u) /(3sin(v) )