We will evaluate ∫√x²−1/x⁴​​dx in the following steps. (a) Using an appropriate trigonometric substitution, transform the above integral into ∫sin²(θ) cos(θ) dθ (b) .
a) ∫sin²(θ) cos(θ) dθ=1/3​sin³(θ) +C
b) ∫sin²(θ) cos(θ) dθ=1/3sin³(θ) +cos(θ) +C
c) ∫sin²(θ) cos(θ) dθ=1/3sin³(θ) −cos(θ) +C
d) ∫sin²(θ) cos(θ) dθ=1/3sin³(θ) −C