Let K, be an RSA generator with associated security parameter k. Let ' 2 8 be an integer. The following signature scheme DS = ( K, S, V) uses a random oracle H : {0, 1}* - Zx where N is the modulus in the verification key: Alg K Alg SIN (M) Alg VH (N.e ) (M, (R, X) ) (N, p, q, e, d) + K sa R + {0, 1} If (R 6E Q, 1} ) then return 0 Return (( N, e), (N, d)) y - H(RKM ) y - H(RKM ) x < yd mod N If (xe mod N = y) then return 1 Return ( R, X ) Else return 0 The message space is {0, 1} . Given a random-oracle model adversary A making q, Sign queries and q H queries, present in pseudocode an adversary I such that DS Adv uf cma ( A) < Advow (I) + ( 2qh + 9 - 1)qs Kisa 2'+1 The running time of I should be that of A plus O((q + q )(' + k3 + k . log( q, + q))). Your proof should use a game sequence consisting of a pair of identical-until- bad games Go, G. Additional comments: give pseudocode for adversary, also need prove time